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The aim of this paper is to summarize, deepen, and comment upon recent results
concerning states on operator algebras and their extensions. The first part is
focused on the relationship between pure states and singly generated subalgebras.
Among others we show that every pure state r on a separable algebra A is
uniquely determined by some element of A which exposes r .
The main part of this paper is the second section, dealing with characterization
of various types of independence conditions arising in the axiomatics of quantum
field theory. These two topics, seemingly different, are connected by a common
extension technique based on determinacy of pure states.

1. DETERMINACY OF PURE STATES

In this part we will be mainly concerned with Jordan operator algebras.

Let us recall that a JB algebra A is a real Banach algebra equipped with a

product + satisfying the following conditions for all x, y P A:

(i) x + y 5 y + x
(ii) x + (x 2 + y) 5 x 2 + (x + y)
(iii) |x 2| 5 |x|2

(iv) |x 2| # |x 2 1 y 2|.

For all details on JB algebras not otherwise discussed here we refer the

reader to Hanche-Olsen and Stormer (1984).

An important example of a JB algebra is a self-adjoint part Asa of a C*-
algebra A equipped with a product x + y 5 1/2(xy 1 yx). Unlike C*-algebras,

not all JB algebras can be represented as algebras of operators acting on

some Hilbert space. Even if this is the case, the resulting algebras need not
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be closed with respect to the usual product of operators. This makes some

questions considerably more difficult than in the setting of C*-algebras.

By a state r of a JB algebra we mean a positive and normalized functional.

A pure state is defined as an extreme point of the set of all states of the

algebra in question.

The restriction and extension properties of pure states with respect to

associative algebras have been widely studied in the C*-algebraic framework

(see, e.g., Anderson, 1979; Akemann, 1989). This line of research was origi-

nated by Aarnes and Kadison (1969), Kadison (1957) and Kadison and Singer

(1950) by showing that any pure state of a separable unital C*-algebra is

restricted to a pure state on some maximal abelian subalgebra. This result

was then improved considerably by Akemann (1970), who showed that given

finitely many mutually orthogonal pure states r 1, . . . , r n of a separable (not

necessarily unital) C*-algebra A, we can always find a maximal abelian

subalgebra B of A such that all restrictions r i | B are pure states of B with

unique extension A. For instance, this means that any pure state can be

recovered from its restriction to some maximal abelian subalgebra. A natural

question arises whether a maximal abelian algebra can be replaced by the

smallest possible nontrivial abelian algebra, i.e., by a singly generated algebra.

This leads us to the following definition.

Let r be a pure state of a JB algebra A. We say that an element a P A

with |a| 5 1 is determining for r if r is the only pure state of A such that

r (a) 5 1.

It should be remarked that if a is a determining element of r , then the

algebra B generated by a is determining in the following sense: the restriction

r | B is a pure state and extends uniquely to r . In this case we call B a

determining subalgebra for r . It follows easily that if B is a determining

subalgebra for a given pure state, then the same is true of any subalgebra

containing B. Therefore the property of having a determining element is

stronger than the property of having a maximal abelian determining algebra.

We show a few important characterizations of states admitting determin-

ing elements (Hamhalter, n.d.-a). First of all let r be a pure state of an algebra

C R
0(X ) of all real-valued continuous functions defined on a locally compact

Hausdorff space X vanishing at infinity. (Any associative algebra is isomor-

phic to some algebra of this type.) Then r is represented by a point measure

d x , x P X. It can be shown that r has a determining element if and only if

x admits a countable system of neighborhoods (Un) with intersection ù Un

5 {x}. As a second example let us consider now the self-adjoint part A 5
B (H )sa of a C*-algebra B (H ) of all operators acting on some Hilbert space

H. It is easy to see that any vector state v x(a) 5 (ax, x) (a P A ), where

x P H, |x| 5 1, has a one-dimensional projection onto span of x as
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a determining element. Interestingly enough, it can be proved that any state

of A admitting a determining element is a vector state.

Our main result is the following criterion of determinacy of pure states.

Theorem 1.1 (see Hamhalter, n.d.-a). Let r be a pure state of a JB algebra

A. If the left kernel L r 5 {a P A | r (a 2) 5 0} has a strictly positive element,
then r admits a determining element.

The converse implication is true provided that A is unital.

Recall that an element of a JB algebra is strictly positive if every state

attains positive value at it. The existence of a strictly positive element is

equivalent to the existence of countable approximate unit ( s -unitality). It

should be remarked that the assumption of unitality cannot be relaxed from

Theorem 1.1.

It is a folklore result that every separable JB algebra admits a strictly
positive element. When we specify Theorem 1.1 to a separable case we

therefore get that every pure state on a separable JB algebra has a determining

element. In other words, a pure state on a separable algebra is always uniquely

determined by its restriction to some singly generated subalgebra.

We can also pose the following question: Given finitely many orthogonal

pure states, can we find a common, finitely generated associative subalgebra
determining for all of them? The answer for the separable case is given in

the following theorem. (Let us recall that states r , w are orthogonal if | r 2
w | 5 2.)

Theorem 1.2. Let w 1, . . ., w n be pairwise orthogonal pure states on a

separable JB algebra A. Then there is a finitely generated associative subalge-

bra determining for all states w 1, . . . , w n.

The notion of determining element is useful for the problem of simultane-

ous extension. As an illustration we shall consider the following situation:

We are given a collection (A a ) of subalgebras of a JB algebra A with prescribed

pure states w a on each A a and we seek a common pure state extension of
states w a . Moreover, let us suppose that all states w a have a determining

element c a . Then any state w of A with the property w (c a ) 5 1 for all a has

to be the desired extension. Generally speaking, the presence of a determining

element enables us to control given state on a given part.

Another application might be found in the axiomatics of quantum

mechanics. If a physical system is modeled by a separable JB algebra then
for any pure state of the system we can find a simple classical subsystem

given only by one observable such that all information is encoded in it

(Theorem 1.1). This contributes also to the discussion on hidden variables

in quantum theory.
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2. STATISTICAL INDEPENDENCE OF C*-ALGEBRAS

The aim of this part is to provide a lucid characterization of the statistical
independence of C*-algebras and to establish hitherto unknown relations with

other independence conditions of algebraic quantum field theory.

Through this part all C*-algebras considered are unital with a unit 1.

Further, all inclusions of C*-algebras B , A considered have the same unit.

Our central notion is the following. Let A1 and A2 be C*-subalgebras

of a C*-algebra A. We say that a pair (A1, A2) is statistically independent if
for every state w 1 of A1 and for every state w 2 of A2 there is a state w of A
extending both w 1 and w 2.

It is commonly assumed in the mathematical foundations of quantum

theory that the system of observables is formed by an operator algebra, while

the ensemble of real states of the system is given by its state space. The

statistical independence then naturally embodies independence of the corres-
ponding physical systems. Any preparation (i.e., state) of one system cannot

effect any preparation (i.e., state) of another system. For that reason the

notion of statistical independence was first introduced and studied by Haag

and Kastler (1964) in the context of algebraic quantum field theory. According

to their independence axiom, algebras corresponding to spacelike-separated
regions should be totally uncoupled, i.e., statistically independent. The inde-

pendence condition is one of the most important parts of quantum field theory

and has been widely studied in various forms.

Besides statistical independence we shall deal also with independence

in the sense of Schlieder.

A pair (A1, A2) of C*-algebras in a C*-algebra A is called S-independent
if ab Þ 0 whenever a P A1 and b P A2 are nonzero elements.

The S-independence condition describes the position of corresponding

algebras without referring to their state spaces. Surprisingly enough, it has

been proved by Roose (1969) that a commuting pair of C*-algebras is statisti-

cally independent if and only if it is S-independent .

Finally, we shall deal with logical independence, which is a quantum
logic version of the independence condition. This type of independence has

been introduced and studied by Redei (1995a, b) in the case of von Neumann

algebras. We extend this definition to a more general class of algebras of

real rank zero (i.e., to algebras with zero noncommutative Hausdorff dimen-

sion). These algebras have been characterized as C*-algebras for which every

self-adjoint element can be approximated by elements with finite spectrum
(Brown and Pedersen, 1991). Therefore real-rank-zero algebras have many

projections. Many important C*-algebras have real rank zero (AW*-algebras,

AF-algebras, rotations algebras, Cuntz algebras, Bunce±Deddens algebras,

etc).
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Let (A1, A2) be a pair of algebras of real rank zero contained in an

algebra A of a real rank zero. We say that a pair (A1, A2) is logically independent
if for all nonzero projections p P A1 and q P A2 there is a nonzero projection
r P A such that r # p and r # q.

In physical formulation, logical independence means that no proposition

about one system should imply or be implied by any proposition of the other

system. [For a more detailed discussion we refer to Redei (1995a).]

We are now prepared to state results. The key one is the following

theorem, the proof of which uses extension technique outlined in the first
part of this paper.

Theorem 2.1. A pair (A1, A2) of C*-subalgebras of a C*-algebra A is

statistically independent if and only if for all positive elements a P A1 and

b P A2 with norm one there is a state w of A such that w (a) 5 w (b) 5 1.

In other words, statistical independence is equivalent to the condition that

any couple of independently chosen normalized elements of the corresponding

local algebras can be exposed by a common state of the global algebra. This

simplifies considerably the original definition. Indeed, going to the universal
representation, we see that (A1, A2) is statistically independent exactly when

for any positive normalized elements a P A1 and b P A2 there is a common

eigenvector corresponding to eigenvalue one.

Let us now turn to the position of the independence conditions. First of

all it can be proved that any statistically independent pair also has to be S-

independent (Hamhalter, 1997b). As a consequence of it we get immediately
a generalization of a result of Summers (1990) stating that W*-independence,

i.e., statistical independence in the category of von Neumann algebras, implies

statistical independence.

Redei (1995a, b) poses a question about the position of logical and

statistical independence. We answer this problem in the following theorem

and counterexample. This result has been proved for von Neumann algebras
(Hamhalter, 1997b).

Theorem 2.2. Every logically independent pair (A1, A2) of real-rank-zero

algebras contained in a real-rank-zero algebra A is statistically independent.

Proof. Assume that a pair (A1, A2) is logically independent. By Theorem

2.1 it suffices to prove that given positive normalized elements a P A1 and

b P A2, we can find a state r of A with r (a) 5 r (b) 5 1.

Let us fix a natural number n $ 2. There exist self-adjoint elements
an P A1, bn P A2 with finite spectrum such that

|a 2 an| #
1

n
, |b 2 bn| #

1

n
(1)
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Let us write an 5 ( k
j 5 1 l jpj, where l j are real numbers and pj are orthogonal

projections in A1. Since |a| 5 1 and |an| 5 maxj 5 1, . . . , k | l j | , we can by (1)

find l j 0, such that

l j0 $ 0 and 1 2 l j0 #
1

n
(2)

For arbitrary state w of A with w ( pj0) 5 1 we have

1

n
$ | w (a) 2 w (an) | 5 | w (a) 2 l j0 |

Therefore,

w (a) $ l j0 2
1

n
$ 1 2

2

n

The same reasoning can be applied for b P A2. Summing up, for each natural

number n $ 2 we can find nonzero projections pn P A1, qn P A2 such that

w (a) $ 1 2
2

n
, w (b) $ 1 2

2

n
(3)

whenever w is a state of A with w ( pn) 5 w (qn) 5 1. Since pn and qn are

nonzero projections, there is a nonzero projection rn P A with rn # pn and

rn # qn. Let us now take a state w n of A such that w n(rn) 5 1. Then of course

w n(a) $ 1 2
2

n
, w n(b) $ 1 2

2

n
(4)

Applying now compactness of the state space of A, we can choose a weak*

cluster point r of the sequence ( w n). Obviously, r (a) 5 r (b) 5 1, as required.

The proof is complete.

Counterexample 2.3 (see Hamhalter, 1997b). A von Neumann algebra

M 5 l ` ^ M5(C ), where M5(C ) is a matrix algebra of all 5 3 5 complex

matrices, contains two-dimensional subalgebras M1 and M2 which are statisti-

cally independent but not logically independent.

The interrelations of independence conditions considered in this paper
can therefore be described by the following chain of proper implications:

logical independence Þ statistical independence Þ S-independence

In the concluding part of our discussion we proceed to the case of

commuting algebras. In that case it can be seen easily that S-independence

implies logical independence since the product of commuting projections is

their infimum. Therefore all independence conditions coincide in this case.
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It turns out, perhaps surprisingly, that independence of commuting algebras

is given by independence of their centers. The following theorem has been

proved in Hamhalter (1997b) for von Neumann algebras. We use the symbol
Z (A ) for the center of a C*-algebra A.

Theorem 2.4. Let (A1, A2) be a pair of mutually commuting C*-algebras

of real rank zero contained in the algebra A of real rank zero. The following

conditions are equivalent.

(i) (A1, A2) is logically (statistically, S-) independent.

(ii) (Z (A1), Z (A2)) is logically (statistically, S-) independent.

(iii) The C*-algebra generated by Z (A1) and Z (A2) is isomorphic to the

C*-tensor product Z (A1) ^ Z (A2).
(iv) The pure state space of the von Neumann algebra generated by

Z (A1) and Z (A2) is homeomorphic to the product of pure state spaces of

Z (A1) and Z (A2).

Proof. The proof of equivalency of conditions (ii)±(iv) is the same as

in Hamhalter (1997b). The implication (i) Þ (ii) being trivial, we concentrate

on implication (ii) Þ (i).
Assume that the centers Z (A1) and Z (A2) are independent. Let us now

take nonzero projections e P A1 and f P A2. Denote by c (e) and c (f ) the

central cover of projections e P A1 and f P A2 with respect to the enveloping

von Neumann algebras A **1 and A **2 , respectively. Using the Kaplansky

density theorem and Pedersen (1979, L. 2.6.2), we have

c (e) 5 ~
u P U(A1)

u*eu

where U (A1) is a unitary group of A1. Now,

c (e)f 5 1 ~
u P U(A1)

u*eu 2 f 5 ~
u P U(A1)

u*euf Þ 0

if and only if there is u0 P U (A1) such that u *0 eu0 f Þ 0. Since u *0 eu0 f 5
u *0 e fu0, we have that

ef Þ 0 if and only if c (e) f Þ 0

By symmetry

ef Þ 0 if and only if c (e)c ( f ) Þ 0 (5)

According to (iii), the independence of centers means that algebra B generated

by them is isomorphic to the C*-tensor product Z (A1) ^ Z (A2). It can be

verified easily that B** is then isomorphic to the W*-tensor product Z (A1)**
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^ Z (A2)**. As a consequence, we see that double duals Z (A1)**, Z (A2)**

are also independent in A**.

By virtue of (5), we now obtain immediately that (A1, A2) are independent.
Theorem 2.4 provides a global explanation of the classical result due

to Murray and von Neumann (1936, Corollary of Theorem III) saying that

the pair of commuting von Neumann algebras is S-independent provided that

one of algebras is a factor.
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